Special values of the Riemann zeta function via arcsine random variables
نویسندگان
چکیده
منابع مشابه
Irrationality of values of the Riemann zeta function
The paper deals with a generalization of Rivoal’s construction, which enables one to construct linear approximating forms in 1 and the values of the zeta function ζ(s) only at odd points. We prove theorems on the irrationality of the number ζ(s) for some odd integers s in a given segment of the set of positive integers. Using certain refined arithmetical estimates, we strengthen Rivoal’s origin...
متن کاملSome Unusual Identities for Special Values of the Riemann Zeta Function ∗
In this paper, we use elementary methods to derive some new identities for special values of the Riemann zeta function.
متن کاملLadder Heights , Gaussian Random Walks , and the Riemann Zeta Function
Yale University and University of California, Berkeley Let Sn n ≥ 0 be a random walk having normally distributed increments with mean θ and variance 1, and let τ be the time at which the random walk first takes a positive value, so that Sτ is the first ladder height. Then the expected value EθSτ, originally defined for positive θ, may be extended to be an analytic function of the complex variab...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 2015
ISSN: 2156-2261
DOI: 10.1215/21562261-3089145